
Learn the fundamentals of coding
and create your own simple game!

Introduction & Contents

Hello! Congratulations on your awesome decision to open this book.

FUZE⁴ makes learning real coding as accessible as possible.

Coding can appear pretty complicated at first. It's full of strange words, mathematical concepts and
problem solving. Don’t let any of this put you off as, similar to most things, once you delve a little deeper
it’s not as scary as it first looks.

There is one thing though… Typing. Lots and lots of typing.

If you want to get to grips with real coding, there's no getting around this. You will be typing lines of code
and you will make mistakes. You might spend a fair amount of time having to check for tiny spelling and
syntax mistakes. Not to worry - debugging your code is a very important part of the learning process.
Every mistake you fix makes you a better programmer!

Over the next 16 pages, you will be taken on a journey of understanding from the simplest program
imaginable to comfortably using some of the more flashy programming techniques.

When learning to code, we believe you should start with 3 things: Loops, Variables and If Statements.

If you understand these three things even a little bit, you will begin to understand the most complicated
programs out there. ALL programming languages rely on these fundamental concepts in some form or
another, so knowing how they work is a vital step in your journey to being a coder. Ready?

Contents:

Project 1: Hello World - P3

Part A: An introduction to the concept of loops.
Use simple commands to print text on the screen.

Part B: We use colour commands to make our
program look more lively!

Part C: We take the Hello World project to its limits
in “SUPER MEGA HELLO WORLD”.

Project 2: How D’ya Like Them Apples? - P6

Learn about the next fundamental aspect of
programming. Use variables to manipulate and
keep track of stored numbers.

Project 3: Let’s Get Quizzical - P7

Part A: Learn how to use the input() function to
interact with the player. An introduction to using
simple if statements.

Part B: Make your quiz as awesome as possible
with introduction and ending screens.

Project 4: Bouncing Ball - P9

Part A: Learn about the way screens work and use
this knowledge to make a circle appear on screen.

Part B: Put everything we’ve learned to the test
and make the circle move and bounce across the
screen.

Part C: Finish the project with the circle bouncing
all over the screen and changing colours!

Project 5: Tennis For One - P14

Make a single player game!

We combine everything we’ve learned in this
project book and more to create our very own
playable game.

Glossary of Commands Used - P19

Quickly reference any troublesome commands in
our comprehensive glossary. Covers every
command used in the booklet.

Page 1

FUZE⁴ is a programming environment which puts everything you need to make your own programs and
games in one easy to use and convenient place. Let’s take a look at a few of the screens we’ll be seeing as
we go through the projects.

Use FUZE like a PRO!

Page 2

The first screen you see when you load FUZE⁴ is
the Main Menu. From here we can quickly go
to any of the places we need. In this workbook
we’ll be mainly using the Code section, but take
a look around and see what you can find! Feel
free to change the colours of FUZE⁴ in the
Settings section.

Take a look at the bottom of the screen and
you’ll see the Command Bar. This is a very
useful part of FUZE⁴, as it tells you all of the
controls available to you.

Select the Programs section with the A button.

The Programs section is where you access all
the programs in FUZE⁴. When you first see the
screen, notice the bar at the top which says
“FUZE Projects”. These are the demo projects
which are included in FUZE⁴. Try some of them
out! There are lots of things to learn from these
projects.

Pressing the X button on a FUZE⁴ project will
allow you to copy it into your projects to edit.

Press the R button to see your projects. Of
course, right now you don’t have any! Select
the “New Project” button with A.

You will be prompted to enter a project name,
author and description. Name your project with
your own name followed by a number. For
example, my project would be called “David
Silvera 01”. This will make it very easy for
others to find your work! Perhaps write some
information about the project in the
description box too. Confirm your title, author
and description with the + button.

When you have completed the description,
press the + button to create the project. You
will be taken to the Code Editor!

The Code Editor is where the magic happens.
We’ll be seeing lots of this screen going
forward!

⁴

“Hello World”

Project: 1a

Ready for your first computer program? I hope so! Now that you have made a project, let’s write some
code! This project will teach you about what a loop is and why they’re important.

Loops are used all the time in programming. We use them to make a sequence of instructions happen
again and again. A good example would be a video game - all video games are huge loops which only stop
when you turn the game off!

1. print(“Hello World”)

2. update()

3. sleep(2)

Hey, look down here! This section of the page will contain challenges as we go ahead.

HACKER CHALLENGE: Can you make your program RUN Ten times faster?
Page 3

Here we simply print text on the screen for 2 seconds.

We must use an update() function to send our text to the
screen, and a sleep() function to wait for 2 seconds before
returning to the code. Run the program with the + button.

1. loop

2. print(“Hello World”)

3. update()

4. repeat

For the next steps, change your code to look like the examples. You may need to delete lines of code or
move them to achieve this. Keep an eye on the line numbers to make sure yours is correct.

Here we are using a loop to make our text print again
and again. Run the program (+) to see our text appear
across the screen. Off it goes! Press + again to stop the
program!

All instructions between the loop and repeat keywords
will repeat forever. It’s a bit like a sandwich! loop and
repeat are our bread, and everything inside is the filling!

1. loop

2. print(“Hello World”)

3. print()

4. update()

5. repeat

1. loop

2. print(“Hello World”)

3. print()

4. update()

5. sleep(1)

6. repeat

Let’s add a small delay back into our program to really
make this effect clear.

Here we have added our sleep() function back into the
loop.

Think about what the computer is doing as it reads each
and every line of code.

Remember: When the program reaches repeat, it goes
back to loop!

Let’s make a small change to make the text move down
the screen instead of across.

By adding an empty print() function to our program we
reset the position of the printed text to the start of the
next line.

Now we have a waterfall of Hello Worlds!

“It's a beautiful World”

Project: 1b

For the second part of this project we’ll add some colour to the mix.

Page 4

1. ink(fuzePink)

2. loop

3. print(“Hello World”)

4. print()

5. update()

6. sleep(0.1)

7. repeat

We’ve added a new line at the start of our program. This
ink() function changes the colour of our text!

In the example we’ve used the colour fuzePink. FUZE⁴
knows the name of lots of colours, try your favourite! If
FUZE⁴ knows a colour the name will appear green.

Alternatively, you can try a number between 0 and 115.
Each colour has its own number!

Notice we have also used a 0.1 in our sleep() function to
speed up the program. Now it’s ten times faster!

1. ink(random(116))

2. loop

3. print(“Hello World”)

4. print()

5. update()

6. sleep(0.1)

7. repeat

In this example we have replaced our fuzePink colour
with a new function: random()

This function gives us a random number out of the
number we put in the brackets. Since FUZE⁴ knows 116
different colours, we put this number in the brackets to
give a random selection out of every colour.

Notice that to change the colour, you must run (+) the
program again.

This is because when the program reads the repeat line,
it returns to loop. Our ink() function is only read once!

1. loop

2. ink(random(116))

3. print(“Hello World”)

4. print()

5. update()

6. sleep(0.1)

7. repeat

Take a look at this small change, and the big difference it
makes when you run the program!

By moving our ink() function inside the loop, we are now
reading this line on every repetition! This means the
colours will change by themselves.

This is the most important part of the project.

If you understand the difference between something
being outside of the loop and being inside of the loop,
then pat yourself on the back! You understand loops.

HACKER CHALLENGE: Using the textSize() function, experiment with different sizes of text. For example:

In the loop, try adding: textSize(100) to make your text much bigger.

Can you use our random() function to make the size of our text random every time?

7

“Super Mega Hello World”

Project: 1c

Let’s combine everything we’ve learned with some new functions to take this project to the next level.

Page 5

1. loop

2. ink(random(116))

3. printAt(0, 0, “Hello World”)

4. update()

5. sleep(0.1)

6. repeat

We’ve changed our print() function here to be printAt()
instead. Notice that it looks a bit different now, we have
two numbers before the text.

The printAt() function is super useful for printing text in
different places! The first number in the brackets is the
column to start printing in, and the second is the row.

Experiment by changing these numbers!

8

1. loop

2. ink(random(116))

3. textSize(random(720))

4. printAt(0, 0, “Hello World”)

5. update()

6. sleep(0.1)

7. repeat

In this example we have solved the Hacker Challenge
from the previous page! By putting the textSize()
function inside the loop, we can use random() in the
brackets just as with we did with ink() to get random
sizes!

The number in the brackets is the maximum size of your
text. It is actually the height of your tallest letter in pixels!
More on that later. Experiment with different values
here.

Try removing the sleep() function to speed things up!

1. loop

2. ink(random(116))

3. textSize(random(720))

4. col = random(tWidth())

5. row = random(tHeight())

6. printAt(col, row, “Hello World”)

7. update()

8. repeat

For this example, we’ve made a couple of
important changes.

We’ve added two new lines at 4 and 5. “What are
those strange words, col and row?” I hear you
ask.

Don’t worry! These are called variables, we’ll be
exploring them in detail on the next page!

The “t” in the tWidth() and tHeight() functions
stands for “text”. These helpful functions tell us
the maximum amount of text characters we can
fit on the screen.

If you’re having trouble understanding this part - imagine a piece of paper. If you write in huge letters, you
won’t fit many letters on one line, but If you write in tiny letters, you can fit loads of them on one line!

This is where tWidth() and tHeight() come in handy! Depending on the size of your text, you’ll be able to fit
different amounts of letters on screen. These functions tell us exactly how many.

By using random(tWidth()), we get a random text position based on the size of our text.

9

1

Project: 2
“How d'ya like them apples?”

Hello again! In this project we’ll be looking at another very important concept when it comes to coding.
Say hello to variables!

Change and add to your program so that it looks
like the example on the left.

Let’s talk about the new command we are using
on line 3: while

We can use while to put a condition for our loop.
In our example, we only want the loop to
continue if apples is greater than (>) 0. This
means when we get to zero apples the loop will
stop and we will move to line 14.

What about that funny looking -= sign? I hear
you ask. Well, that’s called a minus equals. We
use these to reduce the value of a variable. To
increase the value, we use += (plus equals)

What a surprise! Really, apples -= 1 is short for:

apples = apples - 1

We are redefining apples to be equal to itself
minus one.

HACKER CHALLENGE:
1. Can you make your program eat 2 apples at once?
2. Can you change your prgram so that you begin with zero apples and gain them instead? Your program should stop
when you reach ten apples.

Page 6

1. apples = 10

2. print(apples)

3. update()

4. sleep(2)

A variable is simply a piece of data which we label with a
name.

Take a look at the program on the left. We begin with the
statement: apples = 10

We are taking a value (10) and giving it a label.

It’s almost like putting the number 10 in a box and writing the word “apples” on it! Now that we have
done this, we can use the word apples in our program.

On line 2 we print the value of the apples variable. Notice that there are no speech marks around the
word apples. If we wrote print(“apples”) instead, we would just see the word “apples” appear on
screen! We want to see the value of the variable, so we do not use speech marks here.

Let’s write a simple program which puts this variable to use. Our goal is to manipulate (change) the value
of our variable, and print some text on the screen to show what’s happening. Feel free to change this
program to say what you want to say! You don’t have to use apples. How about sweets?

1. apples = 10
2. ink(green)
3. while apples > 0 loop
4. clear(white)
5. print(“I have “, apples, “ apples”)
6. print()
7. update()
8. sleep(1)
9. print(“If I eat one then… ”)
10. update()
11. sleep(1)
12. apples -= 1
13. repeat
14. print(“I have no apples left…”)
15. update()
16. sleep(3)

Who doesn’t like a good Quiz? In this project we’ll be making our very own quiz game which you can
improve on! Test your friends and parents and feel free to make it as silly as possible.

Before we get started, there’s a new concept to learn. They’re called if statements.

We begin with a score variable, since
we need to keep track of how well
the player is doing.

Notice the strange looking “\n” at
the end of the print lines? This makes
FUZE⁴ start a new line to print on.

We are using the input() function to
allow the player to enter some text.
We store their answer as a variable
called answer.

Our if statement is on line 13. It
checks whether their answer is equal
to the correct one.

Don’t be scared by the double equals
(==). We use this when comparing
two things in programming.

If it is, we print “Correct!” and
increase the score variable by 1.

We use the else keyword to give an
instruction for when the player
answers incorrectly. If their answer is
anything other than “david” they will
get it wrong.

For our quiz, we’ll use an if statement to do something if a player gets the answer to a question correct,
and to do something different if they answer incorrectly.

Below is a small introduction to the quiz and a single question. Feel free to copy it exactly, but we
encourage you to make up your own question!

Don’t worry, if statements are the easiest concept to learn.
Why? Because people already use them all the time!

Ever heard something like “If you eat all your vegetables, then
you can have extra dessert”? Well, that’s an if statement!

An if statement is a condition, and something that happens if
that condition is true.

1. apples = 10
2. if apples > 0 then
3. print(“Hurray!”)
4. endif
5. update()
6. sleep(2)

1. score = 0
2. ink(fuzeBlue)
3. textSize(40)
4. print(“Hello and welcome to my quiz. \n”)
5. print(“Please answer in lower case only. \n”)
6. update()
7. sleep(3)
8. clear()
9. print(“Q1. What is my name? \n”)
10. update()
11. sleep(3)
12. answer = input(“What is my name?”)
13. if answer == “david” then
14. print(“Correct! Well done! \n”)
15. score += 1
16. else
17. print(“Incorrect… Better luck next time! \n”)
18. endif
19. update()
20. sleep(3)

In programming, if statements are used to do all sorts of things. Imagine a video game controller. Each
button might have a different outcome, and each one has its own if statement!

“Let's Get Quizzical”

Project: 3a

Page 7

“Let’s Get Quizzical”

Project: 3b

Page 8

9. print(“Q1. What is my name? \n”)
10. update()
11. sleep(2)
12. answer = input(“What is my name?”)
13. if answer == “david” or answer == “dave” then
14. ink(green)
15. print(“Correct! Well done! \n”)
16. score += 1
17. else
18. ink(red)
19. print(“Incorrect… Better luck next time! \n”)
20. endif
21. update()
22. sleep(2)
23. // MORE QUESTIONS GO HERE
24. clear()
25. ink(fuzeBlue)
26. print(“Let’s see how you did! \n”)
27. update()
28. sleep(0.5)
29. print(“You scored: “, score, “ out of 1 \n”)
30. update()
31. sleep(0.5)
32. if score == 0 then
33. print(“You need to do your homework! \n”)
34. endif
35. if score == 1 then
36. print(“Wow! Full Marks! \n”)
37. endif
38. update()
39. sleep(3)

In this example we’ve added a few
improvements to our quiz.

First, take a look at line 12. We now
have two possible correct answers.

By using the or keyword, we can
check two different things in a single
if statement.

This is a very useful technique! There
is no limit to how many conditions
you can check in a single if
statement.

Take a look at lines 14 and 18. We
have added a change in ink colour
depending on their answer.

Line 23 is simply a guide for you to
add more questions! It has no effect
on the program. If you add // at the
start of a line, it will be ignored!
These are called comments.

From line 24 onward is a new
section. Every good quiz needs to tell
the player how they did!

The important part here is line 29.
Look carefully at the print() line.

When using print, you can put
commas between things you’d like to
print and FUZE⁴ will print them all
together. When we print score, we
are printing the value of the score
variable.

Lastly, from line 32 we have two if
statements. These ones give the
player a different sentence
depending on their score!

Of course, you’ll need more of these
if statements when your quiz is
complete!

HACKER CHALLENGE:
Add questions to your quiz until you have at least 3. These extra questions need to go between lines 22 and 24.
From 24 onwards is our ending screen. Make sure you use update() and sleep() to give a nice delay between prints in your
quiz. You should also add a different sentence for each possible score.

Project: 4a
“Bouncing Ball”

Page 9

By now you should be comfortable with three concepts: loops, variables and if statements.

With just these three techniques, you can achieve truly great things! Let’s combine everything we know
into a more visual project. Our aim is to put a circle on the screen, make it move around and bounce off
the edges of the screen. First, we must cover a few important facts about the screen.

When we see something on a screen move horizontally (left or right), it is moving along the x axis. When
we see something moving vertically (up or down) it is moving along the y axis.

x axis

y axis

When we want to put something on screen, we must give it a position in co-ordinates. Take a look at the
example below which puts a circle right in the middle of the screen.

1. circle(640, 360, 100, 32, white, false)
2. update()
3. sleep(3)

Say hello to a new function! The numbers in the
brackets all have a particular meaning:

circle(xPos, yPos, radius, sides, colour, outline)

How do we know this circle will appear in the middle of the screen? Well, the number we are using for
the x position of the circle is 640. This is exactly half of 1280! The same goes for the y axis position, 360 is
half of 720. If we change one of these numbers, the position of the circle will change.

If we wanted the circle’s position to change during the program, we will need to use variables.

The screen is made up of something called pixels. A pixel is tiny little light and there are usually lots of
them. A Nintendo Switch screen contains 921600 pixels! These are laid out in a huge grid 1280 pixels
across and 720 pixels down. We call these two measurements the x axis and the y axis.

1. x = 640

2. y = 360

3. loop

4. clear()

5. circle(x, y, 100, 32, white, false)

6. update()

7. repeat

Change your program so it looks like the example
on the left.

We are now using a loop, so our program will
keep running until we press the + button again.

Now that we are using variables for our circle’s
location, we can change the value of those
variables and we will see the circle move!

Make sure you program works just fine, then
turn the page and let’s get this ball bouncing!

1. x = 640

2. y = 360

3. loop

4. clear()

5. x += 1

6. circle(x, y, 100, 32, white, false)

7. update()

8. repeat

“Bouncing Ball”

Project: 4b

HACKER CHALLENGE:
Can you create more variables to store the radius and number of sides for our circle? They should be appropriately named.

Page 10

Our new line is on line 5. Remember += from the
last project?

All we are doing is simply adding 1 to the value of
our x variable every single time the loop goes
around.

Run the program with + to see what happens!

Your circle should move gently along the x axis to
the right.

We could use -= to make our circle travel left, or
we could simply change the 1 to -1.

To make the ball bounce off of the right side of the screen, we will need to change the direction from
positive to negative. To bounce off of the left side, we must change the direction from negative to
positive. To achieve this, we’ll need our speed to be a variable.

1. x = 640

2. y = 360

3. xSpeed = 1

4.

5. loop

6. clear()

7. x += xSpeed

8. circle(x, y, 100, 32, white, false)

9. update()

10. repeat

Our new variable is on line 3.

We are using this variable as the number of
pixels the ball moves along the x axis each time
the loop repeats, so we have called it xSpeed.

Of course, it could be be called something totally
different, like giraffes, for example. However,
this wouldn’t reallly help us understand what’s
going on and would be very confusing to anyone
else!

Make sure to replace the 1 on the line x += 1 with
the xSpeed variable, just like in the example. If
you don’t, our variable isn’t doing anything at all!

We’re almost there! We have everything we need to bounce the ball along the x axis.

On the next page, we’ll be adding the first set of if statements to make the ball bounce off of the left and
right sides.

Remember: when we add a negative number, it is exactly the same as simply subtracting. This concept is
very important as we move forward!

First order of business is to make the ball move around. To achieve this, we’ll need to change the value of
our position variables during the program.

1. x = 640
2. y = 360
3. xSpeed = 4
4.
5. loop
6. clear()
7. x += xSpeed
8. if x > 1280 then
9. xSpeed = -xSpeed
10. endif
11. circle(x, y, 100, 32, white,
false)
12. update()

“Bouncing Ball”

Project: 4c

HACKER CHALLENGE:
Take a break. You’ve earned it! :-)

Page 11

The if statement begins on line 8 and ends on line
10.

Make the changes to your program and run it. You
should see the ball bounce off the right hand side
of the screen, then it will vanish off the left side!

Line 9 might look a bit confusing at first, but it’s
more simple than you think!

We simply take the xSpeed variable and make it
negative. if xSpeed was 4, it becomes -4. If it was
20, it becomes -20.

However… We have a small problem. Did you
notice that the ball didn’t really bounce correctly?

Take another look and you’ll see that the ball
bounces when the middle touches the edge of the
screen. There is a good reason for this, and we
must understand it fully! Take a look below.

To make the ball bounce off the right hand side of the screen, we’ll need an if statement which checks
the position of the ball along the x axis.

When we draw a circle on screen in FUZE⁴, the x and y co-ordinates describe the centre of the circle.

If we only check the position of the x variable in our if statement, the ball will bounce when the middle
touches the edge of the screen.

x, y x

radius

x, y

In our line of code:

11. circle(x, y, 100, 32, white, false)

The 100 is the radius of the circle. With a small adjustment to our
code, we can make the ball bounce perfectly on the edge, no matter
what the size! We simply need to add the radius to our x variable.
Turn the page and let’s get this fully understood!

To make the ball bounce correctly, we need to understand a measurement in a circle called the radius.

1. x = 640
2. y = 360
3. xSpeed = 4
4. radius = 100
5.
6. loop
7. clear()
8. x += xSpeed
9. if x + radius > 1280 then
10. xSpeed = -xSpeed
11. endif
12. circle(x, y, radius, 32, white,
false)
13. update()

“Bouncing Ball”

Project: 4d

HACKER CHALLENGE:
Test yourself and see if you can make the ball bounce and move on the y axis too! You’ll need two more variables.

Page 12

On line 4 we’ve defined a radius variable.

Take a look at the if statement on line 9. We’ve
changed it slightly to include the radius
variable. To understand why it is x + radius,
take a look at this diagram:

We need to include the radius as a variable in our program. Take a look below at the changes and edit
your code. Be sure to read the information on the right!

Now we have a new problem. The circle bounces off the right hand side of the screen, but vanishes
straight off of the left side! Remember the or keyword from the quiz project? This will be very useful here!

x, y
x + radiusx - radius

y - radius

y + radius

We can use either x or y and + or - radius to
give us each edge point of the circle.

Don’t forget to change the size part of the
circle() function to radius on line 12.

1. x = 640
2. y = 360
3. xSpeed = 4
4. radius = 100
5.
6. loop
7. clear()
8. x += xSpeed
9. if x + radius > 1280 or x - radius < 0 then
10. xSpeed = -xSpeed
11. endif
12. circle(x, y, radius, 32, white, false)
13. update()
14. repeat

Because of the way negative numbers
work, we can simply add another
condition to our if statement.

By adding “or x - radius < 0” we are also
checking if the left side of the circle has
touched the left side of the screen.

We can keep the xSpeed = -xSpeed line
exactly the same, because if we make a
negative number negative again, we
get a positive!

This is quite a tricky thing to get your
head around, but stick with it and it will
soon feel natural.

Adjust the speed and watch the circle
bounce!

7

Page 13

“Bouncing Ball”

Project: 4e

1. x = 640

2. y = 360

3. xSpeed = 4

4. ySpeed = 4

5. radius = 100

6.

7. loop

8. clear()

9. x += xSpeed

10. y += ySpeed

11. if x + radius > 1280 or x - radius < 0

then

12. xSpeed = -xSpeed

13. endif

14. if y + radius > 720 or y - radius < 0 then

15. ySpeed = -ySpeed

16. endif

17. circle(x, y, radius, 32, white, false)

18. update()

All we need to do to complete the
program is to add the same variables
and if statement for the y axis.

The exact same rules apply, except the if
statement must check if “y + radius >
720”, because there are 720 pixels on
the y axis!

Now we’ve got this set up correctly, you
could freely change the radius and speed
variables and the program will still work
correctly - although, at very large
numbers it might look a bit strange!

For a cool effect, try changing the false
in the circle() function to true, and then
remove the clear() instruction. You
should see something like a tube of
empty circles drawing all over the place!

With this, we’ve got the basic mechanics
ready for a simple game. Over the next
few pages, we’ll look at how to turn this
into a real single-player game we can
customise!

Before we move on, we should change one last thing in our code. When the Nintendo Switch console is
in the dock, running on a monitor or TV set, the resolution of the screen changes.

In TV mode, the x axis is 1920 pixels and the y axis is 1080. Because of this, when we play our game on
the TV, it won’t quite work properly. We can fix this very easily by using some helpful functions,
gWidth() and gHeight().

1. x = gWidth() / 2

2. y = gHeight() / 2

11. if x + radius > gWidth() or x - radius < 0 then
…

14. if y + radius > gHeight() or y - radius < 0 then

By using gWidth() / 2, we get the centre of the x axis, and by using
gHeight() / 2 we get the centre of the y axis. This will give us the middle
of the screen no matter how big or small our screen is!

We must also replace the
1280 and 720 in our if
statements with gWidth()
and gHeight() if we want our
bouncing to be correct.

8

9

1

“Tennis For One”

Project: 5a

1. gw = gWidth()
2. gh = gHeight()
3.
4. score = 0
5. goal = gw / 30
6.
7. batHeight = 200
8. batWidth = 30
9. batX = goal - batWidth
10. batY = gh / 2 - batHeight /
2
11.
12. ballX = gw / 2
13. ballY = gh / 2
14. ballRadius = 20
15. ballXSpeed = -10

We’ll need the screen width and height many times in our
program, so to avoid typing gWidth() and gHeight() every
time, we’ll make them into nice short variables - gw and gh.

Next we will need a score variable to keep track of our
points.

On line 5 we have a strange looking variable. This will be
where our goal line is on screen. If the ball passes this
point, we lose. It will be very helpful to have this as a
variable so we can use it later in the program.

From line 7 we have the variables to store our player
information. The height and width of the bat in pixels is
very useful, followed by the position of the bat on the x and
y axis. These must be variables if we want our bat to move!

Finally, we have the variables for the ball. These need no
explanation as they are the same from the previous project.
We have named them more descriptively, however.

Page 14

If we’re going to turn this concept into a game, we’ll need a player. We are going to need quite a few
new things, so it is a good idea to start a new project for a fresh start. Now for lots of variables! Yay!

To understand the bat variables, we must know that the x and y positions of a rectangle describe the
top left point. When placing our bat on the screen, this is very important:

batX

goal

batWidth

batX = goal - batWidth

batY

gHeight() / 2

batHeight

batY = gHeight() / 2 - batHeight

On the next page, we will build the main game loop and display our bat and ball, using the variables we
have just set up here. See you there!

“Tennis For One”

Project: 5b

Now that we understand exactly why the variables are what they are, let’s rebuild our loop.

18. loop
19. clear(green)
20.
21. ballX += ballXSpeed
22. ballY += ballYSpeed
23.
24. if ballX + ballRadius > gw then
25. ballXSpeed = -ballXSpeed
26. endif
27.
28. if ballY + ballRadius > gh or ballY - ballRadius < 0 then
29. ballYSpeed = -ballYSpeed
30. endif
31.
32. box(batX, batY, batWidth, batHeight, red, false)
33.
34. circle(ballX, ballY, ballRadius, 32, yellow, false)
35.
36. box(goal, 0, 5, gh, white, false)
37.
38. update()
39. repeat

On the left we have our rebuilt
main game loop, with a couple
of differences.

Firstly, the ball no longer needs
to bounce off of the left side -
this is the goal we are trying to
protect now!

On line 32 we are drawing the
player. We use a box() function
here. As you can see, the
arguments are x position, y
position, width, height, colour
and fill.

We draw the ball on line 34
using the circle() function, just
like in the previous project.

Lastly, on line 36 we draw the
goal line. The x position is our
goal variable. The y position is 0,
for the top of the screen. The
width is 5 pixels, giving us a nice
line. Finally, the height is our
screen height gh variable, since
we want the line to cover the
whole screen height.

Run your program and make
sure it all looks good!

HACKER CHALLENGE:
Feel free to change the colours of everything! Make your project look unique, no need to copy us!

Page 15

Your program should look something like this (don’t worry if your bat and ball aren’t quite the size here):

Project: 5c
“Tennis For One”

18. loop
19. clear(green)
20.
21. c = controls(0)
22. batY -= c.ly * 12
23.
24. ballX += ballXSpeed

Time to take control! This part of the project will teach you how to access the Joy-Con Controllers.

We have added only two new lines before the “ballX +=
ballXSpeed” line.

In FUZE⁴ , we access the controls with the controls()
function. In this project we assign it to a variable called c.

Once assigned, the c variable now contains the state of all
of the controls in the Joy-Con controllers! We can access
them by using a dot “.” followed by the name of the
button or stick we want to read. But what about the (0)?

Take a look at line 22 - “batY -= c.ly * 12” What on earth does that mean?

In our game, we want to control the player using the left control stick.
Since we only want to move up and down, we need to know the y axis
position of the stick. That’s why we use c.ly! The l stands for left, and the y
stands for y axis.

The diagram on the left shows the values we get from c.ly. If the stick is
not being pushed, c.ly is 0. As we move the stick up or down, this 0 gets
closer to 1 (pushed up) or -1 (pushed down).

So, line 22 really says: subtract the value of c.ly from the bat y position.
We also multiply c.ly by 12 to give us higher movement speed.

Run the program and move the left stick up and down to move the bat. Hurray! We have controls.
However… Have you noticed that we can move the bat off-screen? Keep holding up or down to see.

To fix this, we must restrict the y position of
our player. We can use a really helpful
function called clamp() to do this.

The clamp() function forces a number into a
particular range. The first argument is the
value we want to restrict.

The second argument (0) is the minimum
possible value. The last argument is the
maximum. Using gh - batHeight means the
bat cannot move past the bottom of the
screen.

18. loop
19. clear(green)
20.
21. c = controls(0)
22. batY -= c.ly * 12
23. batY = clamp(batY, 0, gh - batHeight)
24.
25. ballX += ballXSpeed

1 - controls(0) 2 - controls(1) 3 - controls(2) 4 - controls(3)

Each pair of Joy-Cons linked to the console is accessed by a different number in the controls() function

Page 16

Project: 5d
“Tennis For One”

32. if ballY + ballRadius > gh or ballY - ballRadius < 0 then

33. ballYSpeed = -ballYSpeed

34. endif

35.

36. if ballX - ballRadius < goal then

37. if ballY > batY and ballY < batY + batHeight then

38. ballXSpeed = -ballXSpeed

39. score += 1

40. ballXSpeed *= 1.2

41. ballYSpeed *= 1.2

42. else

43. score = 0

44. ballXSpeed = -10

45. ballYSpeed = 10

46. ballX = gw / 2

47. ballY = gh / 2

48. endif

49. endif

50.

51. box(batX, batY, batWidth, batHeight, red, false)

Here it is! Note that this if
statement has been added at
line 36, and ends at line 49. The
previous if statements and
box() command after have been
included for clarity.

First, we check if the left edge of
the ball has moved past the goal
(line 36).

Then, inside that if statement,
we have another if statement to
check if the player is in the right
place to bounce the ball back.

See the diagram below for a
visual explanation of this
condition.

If the bat is in the right place,
we reverse the x axis direction,
add a point to our score
variable, and increase the speed
of the ball!

Using an else, we can provide
an alternative set of instructions
which happens if we miss. We
reset the score, speed and
position of the ball.

HACKER CHALLENGE:
Can you make the ball speed increase even faster when we hit it successfully?

In this section, we’ll add the ability to hit the ball and score points. Without this, it’s not a very fun game!

Page 17

To properly understand the if statement on line 37:

if ballY > batY and ballY < batY + batHeight then

Take a look at the diagram on the left. All of the key
points are highlighted with a blue circle, with an arrow
labelling each.

The ball’s y axis position must be greater than (further
down the screen) the top corner of the bat (batY), and
also be less than (further up the screen) than the bottom
corner of the bat (batY + batHeight).

The key here is to remember that the y axis begins at 0 in
the top left corner of the screen, and increases as we
move down the screen toward the bottom.

“Tennis For One”

Project: 5e

55. box(goal, 0, 5, gh, white, false)
56.
57. box(0, 0, gw, 10, grey, false)
58. box(0, gh - 10, gw, 10, grey, false)
59. box(gw - 10, 0, 10, gh, grey, false)
60.
61. textSize(35)
62. ink(white)
63. printAt(30, 1, “Score: “, score)
64.
65. update()

66. repeat

The newly added code on the left
begins at line 57 and ends at line 63.
The previous box() line and the end
of the main loop has been included
for clarity.

The three box() functions simply
draw thin rectangles around around
the screen, leaving the left side
blank. This is only cosmetic - it looks
nice, but it doesn’t change how our
program works.

From line 61, we have our score
display. We define a size for our text
followed by the ink colour, then
simply print “Score: “ followed by the
score variable. Easy as that!

We’re almost there! Let’s display the score and add some polish to the program in this final section.

Congratulations! You now have a fully working game in your FUZE⁴ projects - made by you! Now comes
the most fun part - see how high you can score!

If you feel confused about any of the parts of your code, take another read of the particular page which
explains the section. Making a game is not easy, and this is just the beginning!

Most professionally made video games are tens or hundreds of thousands (sometimes even millions!) of
lines of code. Of course, they usually also require huge teams and years of hard work!

Practise, apply yourself, experiment and learn. Before you know it you’ll be a coding wizard!

HACKER CHALLENGE:
Time for the ultimate Hacker Challenge!

Now that your program is complete, it’s time to get creative. You should change anything about the program to be the
way you want.

Here are some ideas:
● Change the background colour using the clear() command
● Change the colour of the player
● Change the colour of the ball
● Change the size of the player
● Change the size of the ball
● Change the movement speed of the player
● TRICKY: Could you change the rate of increase in the ball speed when we score?
● TRICKY: Could you increase the size of the ball when we score?
● TRICKY: Could you increase the size of the player when we score?
● TRICKY: Could you change the size of the player when we miss?
● TRICKY: Could you change the size of the ball when we miss?

Page 18

Glossary

Glossary of Commands Used

Page 19

box()
Prepares a box to be drawn with update(). The
parameters for the box function are:

box(xPos, yPos, width, height, colour, outline)

clamp()
Restricts a supplied value to a specific range

output = clamp(input, min, max)

circle()
Prepares a circle to be drawn with update(). The
parameters for the circle function are:

circle(xPos, yPos, radius, sides, colour, outline)

clear()
This function clears the screen. By default, this will
clear with a black colour. However, any colour can be
put in the clear() brackets to change the background
colour for the whole screen. This can be a colour
name or an RGBA vector. For example:

clear(fuzePink)
clear({ 1, 0, 1, 1 })

if / then / else / endif
Creates a conditional statement which allows
subsequent lines to be executed provided the
condition is met. else allows for an alternative
condition should the original condition not be met.

Conditional statements are closed with endif.

gWidth() / gHeight()
Returns the screen width/height in pixels

screenWidth = gWidth()

ink()
Changes the colour of printed text. You can put a
colour name, an integer number between 0 and 115
(116 colours), or an RGBA (red, blue green, alpha)
vector describing any colour. For example:

ink(bisque)
ink(42)
ink({ 1, 0.2, 0.8, 1 })

input()
Allows user to input text using the keyboard. Entered
text is stored in a variable. Prompt text may also be
entered. For example:

savedText = input(“Enter prompt text here”)

loop / while / repeat
Initiates a series of instructions to be executed
repeatedly. A loop begins with the loop command
and ends with the repeat command.
The while command provides a condition to a loop.
For example:

while condition == true loop

print()
Prepares text to be be drawn with the update()
function. Can be used to print strings
(information in speech marks), numeric values,
arrays and structures (like controls(0)).

printAt()
Similar to print(), except it allows the user to
print text at a specific text co-ordinate. Text co-
ordinates change with text size.

printAt(3, 4, “Hello!”)

sleep()
Instructs FUZE⁴ to do nothing for a given number
of seconds. To sleep for 1 second, for example:

sleep(1)

textSize()
Sets the size of displayed text. The number supplied
is the maximum height of letters in pixels.

textSize(100)

update()
Sends the framebuffer memory to be drawn to the
screen. This is a necessary function to display
anything on the screen.

controls()
Reads the state of the specified pair (0, 1, 2 or 3) of
Joy-Con Controllers. Should be assigned to a variable.

c = controls(0)
The user can now access any of the controller
buttons/control sticks with .name:

Reading the “X” button: c.x
Reading the right control stick y axis: c.ry

All button values are either 0 or 1.

Control stick values are between -1 and 1.

Published in the United Kingdom ©2020 FUZE Technologies Ltd. FUZE
and the FUZE logos and associated designs, documentation and

materials are copyright FUZE Technologies Ltd.

FUZE registered trademark #UK00002655290

No part of this document may be copied, reproduced and or
distributed without written consent from FUZE Technologies Ltd. All

rights reserved.

FUZE is developed in the UK by:

FUZE Technologies Ltd.
15 Clearfields Farm

Wotton Underwood
Aylesbury,

Buckinghamshire
HP18 0RS

England

Contact information
email: contact@fuze.co.uk

phone: +44(0) 1844 239 432

@fuzeArena

