
Learn techniques that will take your
programming skills to the next level!

Introduction & Contents

Hello there! Good to see you again.

So, you want to to take your code to the next level?

Now that we’ve gotten used to the basics of program flow, storing data in variables and how loops work,
we can talk about more advanced techniques which will give you a huge boost of confidence in your
programming.

This project book is all about storing and accessing data. Setting up our data in the right way can save us
massive amounts of time and provide opportunities for some rather impressive projects!

Over the next few pages, you’ll be introduced to some new concepts - For Loops, Arrays, Functions and
Structures.

Mastering these techniques takes time, patience and practise. Don’t be disheartened if you find some of
these tricky to understand at first - we know you can do it.

Good luck, and see you in the first project!

Contents:

Project 1: For the Love of Loops - P2

Learn a new tool for your programming - For
Loops!

In this project we go through identifying and using
for loops in a simple program.

Project 2: Fortune Teller - P3

This project will teach you another vital
programming concept - arrays.

Learn what an array is, how to set them up and use
them to take your projects to the next level!

Project 3: Picture This… - P5

In this project we learn how to load an image from
the FUZE⁴ media library. Use the image we loaded
to draw to the screen. Make your favourite
monster appear!

Project 4: Out of Control - P7

In this project we will look more deeply into how
the Joy-Con controllers work and how to use them
in your own projects. A simple project which
achieves a lot!

Project 5: Strictly Structures - P8

We take data storage a step further and learn
about a more advanced way to set up programs.
Say hello to structures!

Project 6: Monster Madness - P10

We take all the concepts learned thus far and
combine them in a silly, visually exciting project
featuring lots of monsters!

Project 7: Perfectly Functional - P13

Learn about the final important concept for this
book - functions! In this project we take a closer
look at just what a function is, and how we can
make our own!

Project 8: Mega Quiz - P14

We put everything we’ve learned so far into a big
quiz project. Think you know how to make a quiz
program? Think again!

Glossary of New Commands - P21

Quickly reference any troublesome commands in
our glossary. Covers all new commands introduced
in the booklet.

Page 1

“For the Love of Loops”

Project: 1

Page 2

It’s a strange name, For Loop, isn’t it? Doesn’t really make any sense at first. Well, by the end of this page
you’ll know exactly what one is and how you can use this incredibly useful tool in your own programs!

A For Loop is a special type of loop which repeats a certain number of times. It can repeat any number of
times you need it to and what’s more, it comes with a very clever feature built-in.

1. for num = 0 to 10 loop

2. print(num)

3. update()

4. sleep(1)

5. repeat

Here’s what a for loop looks like. Type in the program on the left
into a new FUZE⁴ project and run. You should see the numbers 0-9
print across the screen.

Just like with a normal loop, the instructions between the loop and
repeat keywords will keep happening. However, this time they will
only happen for a total of 10 times.

So what about this num variable? Well, here’s the clever part.

1. for num = 0 to 10 step 2 loop

2. print(num)

3. print()

4. update()

5. sleep(0.1)

6. repeat

Sometimes you might need your for loop to count up in
a different number than 1 each time.

For this, you’ll need to use step.

By adding step 2 before the loop keyword, we can make
our for loop count up in 2’s instead!

We’ve added an empty print() line to the program to
make our numbers print down the screen instead of
across, and decreased the sleep() time to make the
program a bit faster.

HACKER CHALLENGE:
By using a negative step, can you make your For Loop count backwards instead?

Can you use our variable counter so that the sleep() command waits for longer each time?

For loops contain variables which act as a counter during the loop. You can use these variables within the
loop to make clever things happen!

In the example, our variable is called num because we want to print() the number. This could be called
anything of course!

While the loop goes around, this variable increases by 1 each time. The first time FUZE⁴ reads line 2 our
num variable contains a 0. On the next time num = 1, then num = 2, and so on.

When we set up a for loop, we must write the start and end values on the line. However, there is a small
complication. FUZE⁴ will count up to but not including the last number. This is why we never see the
number 10.

Experiment by changing the range of numbers in the first line. Get a feel for what to expect when trying
different things. It might not seem like much yet, but this is one of the most vital techniques to understand
more complex programs.

Great job! Now you understand what a for loop is, the next step is learning how to use them. Their most
useful application is when combined with another very useful technique. See you on the next page!

“Fortune Teller”

Project: 2

Remember, this book is all about data. In programming, we can do some very impressive things by simply
setting up our data in a different way.

To take our programming skills to the next level, we’ll need to cover a type of data storage called an
array. This is another invaluable tool for programming. Every single video game you’ve ever played used
lots and lots of arrays.

An array is a table of variables. We use them to store multiple pieces of information for easy access.
Think of it like a chest of drawers, where each drawer has a number. These numbers always start at 0.

This project is to create a Fortune Teller game. We will set up a simple array of various sentences. Next,
we will need to ask a question and receive a random answer chosen from our array. Let’s get into it!

1. array fortune[4] First order of business is to create our array.

Writing the statement above creates an empty array of 4 elements. An empty chest of drawers with 4
drawers! Each element (drawer) is given a number. So, our array looks something like this:

fortune[0] fortune[1] fortune[2] fortune[3]

Of course, at the minute our array is completely empty. Let’s put in some information! Below we are
adding a sentence to each element:

1. array fortune[4]

2. fortune[0] = “It is certain! “

3. fortune[1] = “You might be in luck! “

4. fortune[2] = “It’s not looking good… “

5. fortune[3] = “Definitely not. “

There we have it!

To store information in an array, write the element
you would like to access followed by an equals and
the information you want to store.

There is another way we can set this up. Arrays are
very flexible in FUZE⁴.

1. fortune = [

2. “It is certain! “,

3. “You might be in luck! “,

4. “It’s not looking good… “,

5. “Definitely not. “

6.]

Here is a different way to set up your array. Both of
these ways work in the same way. Use whichever one
you find most comfortable to look at!

Which one you choose depends on what you are
going to use your array for.

When defining an array like this, you must use
commas to separate the information. The last piece of
information does not need a comma after it.

HACKER CHALLENGE:
Add at least 2 more sentences to your array.

Page 3

Either way, it’s up to you which method to choose. You could even write the entire thing on one line, as
long as you get the punctuation correct! This might be a bit tricky to read though…

Now that we’ve got our array set up, let’s put it to use! Turn the page and we’ll finish the program.

Project: 2b
“Fortune Teller”

1. array fortune[4]

2. fortune[0] = “It is certain! “

3. fortune[1] = “You might be in luck! “

4. fortune[2] = “It’s not looking good… “

5. fortune[3] = “Definitely not. “

6.

7. loop

8. clear()

9. print(“Ask me anything! \n “)

10. update()

11. sleep(1)

12. question = input(“Type your question here. “)

13. sleep(1)

14. print(“Are you ready to know your fortune?

\n“)

15. update()

16. sleep(1)

17. print(“The answer to your question is… \n”)

18. update()

19. sleep(1)

20. num = random(4)

21. print(fortune[num], “\n”)

22. update()

23. sleep(1)

24. print(“Let’s play again! “)

25. update()

26. sleep(2)

Let’s go over what’s happening here.

We have added a large section of code
from line 7 onwards.

We are using a loop so that our
program continues to run seamlessly
until we decide to stop.

For the most part, we are using the
same technique as the “Quiz” project -
using print() statements followed by
update() and sleep() to provide pauses
between printing messages.

Just like the quiz project, we use the
input() function to allow the user to
type in a question.

We must store their question as a
variable, even if we don’t use it.

Once they type their question and
press the + button, we print some
sentences to build the tension!

The important part of our program is
line 21. This is where we actually
access the information from our array.

To give a random answer, we must
create a random index. Line 20 creates
a variable called num which stores a
random number chosen out of 4 (0-3).

We then use the num variable as an
index into our array!

You can think of this as rolling a dice,
then choosing an answer based on the
number!

HACKER CHALLENGE:
Add sentences to your array until you have at least 8. You can make them about anything you like - it doesn’t even have to
be a fortune teller!
Make sure that your sentences actually appear in the program! HINT: You’ll need to edit line 20: num = random(4)

Well done! You’ve added a crucial technique to your programming skills. It may not seem like it yet, but
the concept of an array is immensely useful. From databases to painting software, from video channels
on the internet to video games of all types - they all use arrays in various ingenius ways.

Learning this technique is going to be very important in your coding journey. Make sure you read this
project carefully, try to do it from the start by yourself - but don’t worry if you need some help!

Page 4

3

Project: 3
“Picture This…”

The FUZE⁴ media library is full to the brim with incredible artwork to use in your creations, so let’s get
using them! This project will teach you how to load an image into a program and draw it. To begin, we’ll
need to load an image from the Media Library and store it in a variable within a program.

Your program should look like this
before continuing.

Page 5

Start a new project. On line one, type the code you see on the left here.
Once you’ve typed it, put your cursor inside the brackets.

1. img = loadImage(“Untied Games/Creeper”)

1. img = loadImage()

When your cursor is inside the brackets for loadImage(), you’ll see the Media key on the FUZE⁴ on-screen
keyboard start to flash. This means it’s ready to go into the media library for us to load an image easily!

As you can see on the left, the Media button on the
keyboard is glowing. When this is happening, click on the
button using the Joy-Con, or press F2 on the USB
keyboard.

When you go into the Media section, you’ll see a
number of Artist Thumbnails. Scroll down and find
Untied Games.

Click on their icon and find the JRPG folder. You’ll then
see a number of awesome assets!

Find the “Creeper” image and select it with the A
button, or Enter on the USB keyboard.

You should see the screen on the left. At this point,
notice the option underneath the image. We can now
press the Y button to paste the filename into our code.

Once you press the Y button, you will be taken back to
the code editor and you’ll see the filename appear in
the brackets!

This is the easiest method to get assets from the Media
library into your code. Give it some practise and feel
free to use a different image!

1

2

“Picture This…”

Project: 3b

Now that we’ve got our image file stored in a variable, we can use another function to draw this image to
the screen.

3. loop
4. clear()
5. drawImage(img, 0, 0)
6. update()
7. repeat

Add the lines on the left to your program. As you can see, we
are using a simple loop to update the screen, with only one
main command inside: drawImage()

In the brackets for drawImage(), we need the variable which
stores the image and some screen co-ordinates (x, y). The
image will be drawn from the origin point at the co-ordinate.

The origin point is the top left corner of the image - this includes any blank space in the picture. If we
change the co-ordinate in drawImage(), we are changing where this top left corner is placed on-screen.

3. loop
4. clear()
5. drawImage(img, 0, 0, 4)
6. update()
7. repeat

You might notice that the image is very small! This won’t do at all. By using an extra piece of information
in our drawImage() statement, we can change the size of our image.

Adding an extra number after the Y axis position in the
drawImage() function gives the image a scale
multiplier. By putting a 4 here, we are multiplying the
size of the image by 4.

Try moving the image to somewhere else on-screen,
then changing the scale multiplier.

But what if we want to do more than just move the image and change the size? We might want to spin
the image around or apply a new colour to the image. Luckily, there is a function in FUZE⁴ to do just that!

3. loop
4. clear()
5. drawImageEx(img, { 0, 0 }, 90, { 4, 4 }, red)
6. update()
7. repeat

Don’t be scared by the strange looking
brackets! These are called curly brackets,
and we use them with something called
vectors.

We won’t be going into detail on vectors
in this workbook. For now, let’s explain
what’s going on here.

The drawImageEx() function allows us to do all sorts of things with an image. Here are the arguments:

drawImageEx(image, location, rotation, scale, tint)

The location of the image is just a pair of co-ordinates in curly brackets. The next value (rotation) is a
number of degrees to rotate the image by.

Things are a little different for the scale - we now have separate x and y scale values in curly brackets, this
gives you total control over the size of your image! Lastly, we have a tint colour to apply to the image. Try
some different colours and see the effect it has!

HACKER CHALLENGE:
1. Can you add a rotation variable to your program and change it in the loop to cause your image to spin around?
2. Can you add a scale variable to your program and change it in the loop to cause your image to grow or shrink?

3

4

5

Page 6

“Out of Control”

Project: 4

Learning how to use the Joy-Con controllers in your own projects is a great feeling. Suddenly your
programs will begin to feel like real game projects. Outside of making a game, it opens up a whole world
of interactivity for any sort of program! Are you ready? It’s time to take control of this situation.

Page 7

1. loop

2. clear()

3. c = controls(0)

4. print(c.a)

5. update()

6. repeat

1. loop

2. clear()

3. c = controls(0)

4. if c.a then

5. print(“That’s the A button!”)

6. endif

7. update()

8. repeat

In this example we are using a simple if statement
to display a message when we are pressing the A
button.

Notice the print() statement is inside the if
statement which checks if c.a is true.

When we want to check if the A button is pressed,
we only need to write if c.a then.

If the message displays only when the A button is
pressed, your program is working perfectly!

If we run this program on the left, all we will see is a single 0
in the top left corner of the screen. See what happens when
you press the A button!

Notice the strange looking variable on line 4. We have our c
variable, followed by “.a”.

The controls function is special. It adds a number of
properties to the variable we assign it to.

1. c = controls(0) If we want to access the controllers, we need to use a
function called controls().

If you’ve looked at any of the FUZE⁴ demo projects, you might have seen a line of code which looks like
the one just above in the grey box. The 0 in the brackets tells FUZE⁴ which pair of Joy-Con’s we are using.

Sometimes instead of a c variable, you’ll see a letter j instead. The name isn’t important, but notice that
we are assigning the result of the controls() function to a variable.

Once we do this we can access any of the buttons, any of the control sticks and even the gyroscope for
motion controls!

Programs which use the controls often need to be checking them constantly, or we wouldn’t be able to
control things very well! This means we will be using a loop:

If we can now use c.a to check the A button, how do you think we check the B button? Yes. You are
correct. I don’t even need to hear your answer! It really is that simple.

HACKER CHALLENGE: Can you add more If Statements to the program to display a message when the B,
X and Y buttons are pressed?

Project: 5
“Strictly Structures”

This project will introduce you to another very useful type of data storage called structures. Don’t be
afraid! They work very similarly to an array. The difference is that each “part” of the structure has a
special name. They are called properties. Arrays have elements, structures have properties.

person[0] person[1] person[2]

“Dave” 28 “Guitar”

1. person = [“Dave”, 28, “Guitar”] We’ve stored the information we want in elements 0, 1
and 2 of our array called person,

Remember, we can picture this array as looking something like the diagram below, with each piece of
information stored in its separate elements, each with its own number:

We could access this information with a statement like: print(person[2]). This is if we wanted the
interests speicifcally, for example.

This is very useful but it could be even more convenient. We have to remember that the first element
contains names, the second contains age and the third element contains interests. Wouldn’t it be much
easier if we could name the elements? That’s exactly what a structure allows us to do! Check it out, we’ll
turn our person array into a structure instead:

1. person = [.name = “Dave”, .age = 28, .interests = “Guitar”]

To introduce this idea properly, let’s refresh ourselves on how an array works. Imagine we want an array
to store information about a person - their name, age and interests. We might set it up so it looks
something like this:

To make structure properties, we use a full stop followed by a name for the property. Our person variable
above is now a structure with three properties: .name, .age and .interests.

We can imagine it looking something like this in the FUZE⁴ brain:

person.name person.age person.interests

“Dave” 28 “Guitar”

We would now access this information with something like this: print(person.name)

1. person = [
2. [.name = “Dave”, .age = 28, .interests = “Guitar”],
3. [.name = “Luke”, .age = 21, .interests = “Robots”],
4. [.name = “Kat”, .age = 27, .interests = “Art”]
5.]

HACKER CHALLENGE:
Can you add another property to your structure?

We can upgrade this even further by combining both concepts. Below is an example of an array of
structures. By adding a pair of square brackets, we can now add many structures into the person array.
The person variable is now an array of 3 elements, each one containing a structure of 3 properties.

You should use information
from people you know
instead!

On the next page we’ll see
how to use this information
efficiently in a program.

Page 8

“Stricly Structures”

Project: 5b

In this section, we’ll look at how to use the data we’ve stored in our array of structures. With the latest
change, we can imagine our data looking something like the diagram below:

7. for i = 0 to len(person) loop
8. printAt(0, i, person[i].name + “ is “ + person[i].age + “ and likes “ + person[i].interests)
9. repeat
10. update()
11. sleep(3)

7. for i = 0 to len(person) loop
8. printAt(0, i, person[i].name)
9. repeat
10. update()
11. sleep(3)

.name .age .interests

person[0] “Dave” 28 “Guitar”

person[1] “Luke” 21 “Robots”

person[2] “Kat” 27 “Art”

Let’s write a simple program to print the names of the people in our array of structures. Rather than
writing three separate print() instructions, we can use a for loop which counts over each person, printing
their name.

Remember: len(person) is 3, since there are 3
elements in the person array. The i variable will count
from 0 up to but not including 3. This means the i
variable will be 0, then 1, then 2. Using len(person)
means we could have any number of people in the
array, and the program will work!

We could improve this program to include a simple sentence which uses all of the information in our
person array. This will be quite a long printAt() instruction!

This program is saving us time because to do this without a loop we would need three separate printAt()
instructions! You might think “three instructions isn’t many”, and you’d be right - but what if our array
contained one hundred people? This simple 3 line for loop would print them all!

Let’s break down exactly what’s happening here in order to fully cement the concept into our minds.

The first time around the loop, our i variable is 0. The printAt() statement will look something like this:

printAt(0, 0, person[0].name + “ is “ + person[0].age + “ and likes “ + person[0].interests)

This will output the following sentence: “Dave is 28 and likes guitar”

The second time around the loop, our i variable is 1. The printAt() statement will look something like this:

printAt(0, 1, person[1].name + “ is “ + person[1].age + “ and likes “ + person[1].interests)

This will output the following sentence: “Luke is 21 and likes robots”

HACKER CHALLENGE:
Add more people to your array until you have a total of 5. Make people up if you can’t find anyone else!
Can you add more properties to the structures and include them in the sentence?

Page 9

3

Project: 6
“Monster Madness”

In this project we’ll combine everything we’ve learned so far into a silly, colourful project! Using arrays,
structures and for loops, we’ll be applying these concepts into a basic template for drawing lots of
images on the screen and making things happen to all of them at once using the Joy-Con controllers.

This project will be the first look at setting up a more “professional” sort of program. Remember, the
theme of this workbook is data. Setting up our data is going to very important here, there’s a lot to learn,
so put your coding hats on! Start a new project and enter the code below.

1. images = [
2. loadImage(“Untied Games/Creeper”),
3. loadImage(“Untied Games/Man Eater”),
4. loadImage(“Untied Games/Slime”),
5. loadImage(“Untied Games/Goblin”)
6.]

We’ll begin with an array of images to use in our program. Each element of the array will be a
loadImage() instruction, containing a graphic from the artist Untied Games.

 Of course, you don’t have to use the
same images as we do! Feel free to
browse the FUZE⁴ media library and paste
different filenames into your code.

Important: Make sure you use single
image, 2D graphics. This program won’t
work with 3D models or tilesheets!

Once we’ve completed this array, we’ll need to create an array of structures to store all of our monsters
to put on screen. We’ll be setting this up a little differently this time, since we want to have lots of
monsters on screen. Take a look at the code below:

8. numMonsters = 50
9. array monsters[numMonsters] = [
10. .image = 0,
11. .rotation = 0,
12. .scale = {1, 1},
13. .position = {0, 0}
14.]

 Wow, this is already starting to look quite complex!

Don’t worry - this is exactly like our person array from
the previous project, but it’s laid out a little differently.

monsters is an array of 50 elements, each one a
structure containing 4 properties.

Rather than putting values in for each structure like
we did before, we are starting with default values for
all of the structures.

Now that’s out of the way, we need to populate our monsters array with values. We need to set different
values for all 50 elements - this will take a while if we do it manually! Instead, we will use a for loop and
some random values to make it interesting!

16. for i = 0 to len(monsters) loop
17. monsters[i].image = images[random(len(images))]
18. monsters[i].rotation = random(360)
19. monsters[i].scale = {1, 1} * (random(4) + 1)
20. monsters[i].position = {random(gwidth()), random(gheight())}
21. repeat

There it is! This is quite a complicated looking for loop, but don’t worry - it’s simple when you break it
down. On the next page, we’ll look at each of these lines in more detail so as to understand the reasons
behind them.

See you on the next page! Well done - not much more to do now!
Page 10

2

3

Project: 6b
“Monster Madness”

17. monsters[i].image = images[random(len(images))]

18. monsters[i].rotation = random(360)

19. monsters[i].scale = {1, 1} * (random(4) + 1)

20. monsters[i].position = {random(gwidth()), random(gheight())}

Alright, let’s look at each of the lines in the for loop in more detail. What we’re doing in this for loop is
populating the array. When we declare it on line 9, we are simply starting with default values. It’s our job
now to put the things we need into our array!

First, we need to assign an image to the .image property. We have our images stored in the images array,
so we need to select a random one then assign it to the property.

It looks a bit tricky, but what we are doing is simple. We choose a random number out of the length of
the images array, then use that number to index the array. We could use random(4) instead, but using
len(images) allows us to add more images and the program will work!

The next two steps are more simple. We choose a random rotation angle (out of 360) for the .rotation
property, followed by a random scale.

We use {1, 1} multiplied by a random number out of 5 (with a minimum of 1) here. When you multiply a
vector like {1, 1} by a number, both of the numbers are multiplied!

Lastly, we give the monster a random position. The position is stored in a pair of curly brackets as a
vector, since we’ll be using drawImageEx() to make them appear on screen.

Using random(gwidth()) we are choosing a random number out of the whole screen’s x axis. We use
random(gheight()) for the y axis and there we go! We now have a random position in the property.

23. loop
24 clear()
25. c = controls(0)
26.
27. update()
28. repeat

The next step is to build the basic program loop. We’ll start with just the shell, then add to it on the next
page.

We simply want to clear() and update() the screen with a controls() check between them.

Example:
len(images) = 4 How many images in the array
random(4) = 1 The random result
monsters[i].image = images[1] The chosen image

Page 11

4

Project: 6c
“Monster Madness”

The final stretch! We now need to write a for loop which will put each image from the array on screen, in
the right position, scale and rotation.

The new code below is line 27 to 31. The outside loop has been left in for clarity.

23. loop
24 clear()
25. c = controls(0)
26.
27. for i = 0 to len(monsters) loop
28. monsters[i].rotation += c.ly * 10
29. monsters[i].scale += c.ry
30. img = monsters[i].image
31. pos = monsters[i].position
32. rot = monsters[i].rotation
33. scl = monsters[i].scale
34. drawImageEx(img, pos, rot, scl)
35. repeat
36.
37. update()
38. repeat

We use a for loop to count over each monster in the
monsters array. This is the same technique as
before, using len(monsters) as the upper limit.

First we add the left control stick y axis value (c.ly)
multiplied by 10 to the rotation. Next, we add the
right control stick y axis value (c.ry) to the scale. This
gives us control over the rotation and scale of the
images using the control sticks!

For each monster, we want to use each of the pieces
of information contained in the monster’s structure
inside a drawImageEx() statement.

To avoid having a very long drawImageEx() function,
we have created some short local variables to hold
the information from the structure, before using
them on line 34 with the function.

We’re finished! Press the + button to run your program and experience the glory of monster madness!

Move the left and right control sticks up and down to rotate and change the size of your monsters!

HACKER CHALLENGE:
1. Add some more monster images to the images array
2. Change the number of monsters in your program

Well done for completing this difficult project - this might be the most technical one we’ve done so far.
Make sure you thoroughly read through the book and understand everything we’ve done up to now.
We’ll be moving on to another tricky concept next, followed by another large project. Get ready!

Page 12

5

“Perfectly Functional”

Project: 7

Time to level up your skills even further! In this project we’ll be diving deeper into what exactly a function
is, and even how to create our own. This incredibly useful technique is guaranteed to level you up!
We’ve already used functions plenty, but perhaps you don’t realise it yet. Every time we write print() or
ink(), we are using a function. We can also make our own to do anything we want!

A function is a series of instructions which receives an input and gives us an output - even if that input and
output is nothing. Think of it like a separate little program within your main program.

Let’s make a very simple example of a custom function. Imagine we want to convert a number of miles
into kilometres. We would need to input a number of miles, and the function will output a
number of kilometres. Take a look at the examples below - no need to write them.

function milesToKm(miles)
return miles * 1.609

myWalk = milesToKm(3)
print(myWalk)

We begin with the function keyword. This tells FUZE⁴ we’re about to
create our own function. Next, we name it. Here we’ve called it
milesToKm.

Next, in the brackets we tell FUZE⁴ the information to expect. We want this function to convert a number,
so we must provide it with one. We name this piece of information as a variable which is used only within
that function. This is called a local variable.

On the second line, we use the return keyword and state the value we want to return. To convert miles
into kilometres, we multiply the number of miles by 1.609.

We could use this to figure out how many kilometres a 3 mile walk
is. We create a variable and assign the result of our new function to
it!

1. ink(fuzePink)
2. print(“Hello!”)
3. update()
4. sleep(1)

Consider the code on the left - no need to write it yet.

We have a program which prints “Hello!” in fuzePink and sleeps for
one second. These four lines are necessary if we want to make text
appear with a delay afterwards. Remember the quiz game? We used
this technique repeatedly to make our text appear at certain times.

We can write a function to use these four lines of code over and over again without having to type them
each time. Pretty useful! Alright, time to actually write some code!

1. function fuzePrint(colour, text, delay)
2. ink(colour)
3. print(text)
4. update()
5. sleep(delay)
6. return void

It doesn’t stop there! As we said before, functions don’t always need to return anything. Sometimes they
can simply execute a sequence of instructions. Here’s a very practical example:

8. fuzePrint(fuzePink, “Hello!”, 1)

 In this example, we are providing our function
with a colour, some text, and a time delay. These
local variables are all used in the instructions
within the function.

With that done, we can use this as many times as
we want in our program!

 Simply call your function and put the desired
colour, text and delay time in the brackets!

HACKER CHALLENGE:
1. Can you add a size control to your function using textSize()?

Page 13

Project: 8
“Mega Quiz”

We’re going back to our roots in this project. It’s time to use everything we’ve learned so far to make a
program. That’s right - loops, variables, if statements, arrays, for loops, structures and functions!

In this project we’ll be making the ultimate quiz game. This will take the ideas we worked on in the
previous book to another level. This will be the most impressive quiz project you’ve ever worked on, the
pinnacle of interactive trivia-based question games. Are you ready?

The biggest difference between the old quiz and this one will be the way the program works. In the first
book, we wrote each question as a separate list of instructions - it involved repeating ourselves a lot, and
lots more typing than we really need.

There is a way to turn our entire quiz into a single loop - it just requires us to set up our data more
effectively. Let’s use what we’ve learned about structures to set up a question and answer table.

For a bit of extra brilliance, we’ll make this a multiple-choice quiz. This means we need an array of
structures, where each element of the array is a structure of 3 properties: the question, the possible
answers, and the correct answer.

1. quiz = [
2. [
4. .question = “What is an array?”,
3. .answers = [“A table of data”, “A sausage”, “A type of small dog”],
4. .correct = 0
5.],
6. [
7. .question = “What is a loop?” ,
8. .answers = [“A type of cheese”, “A repeated set of instructions”, “A dance”],
9. .correct = 1
10.]
11.]

Here is what the array should look like. This one contains 2 questions, stored in quiz[0] and quiz[1]. We
could access the question of either with a statement like: print(quiz[0].question)

The .answers property contains another array of 3 elements, each one a possible answer. The .correct
property stores the number which corresponds to the correct answer. For example, the .answers
property in question 1 contains:

.answers[0] - “A table of data”

.answers[1] - “A sausage”

.answers[2] - “A type of small dog”

The correct answer is of course .answers[0], so the .correct property stores a 0!

HACKER CHALLENGE:
Make sure to use your own questions!

Page 14

Project: 8b
“Mega Quiz”

With our questions and answers all set up, the next step is to write a useful function which we’ll use again
and again throughout our program. Remember the special fuzePrint function from the previous project?
Well, here it is again! This will help us avoid repeating ourselves when we get to the main part of the
program.

Our function is going to print text in a position on screen at a given size, in a given colour, with a given
delay afterwards. Write the code below in your program:

14. function qPrint(text, x, y, size, colour, delay)
15. textSize(size)
16. ink(colour)
17. printAt(x, y, text)
18. update()
19. sleep(delay)
20. return void

We’ve called our function qPrint! I’m
sure you can guess what the q stands for!

We provide it with 6 parameters:

The text we want to print, the position
on screen, the size and colour for our
text, and the number of seconds to wait.

With this done, we can now use the qPrint function in our program. For example, we could write:

qPrint(“Hello!”, 0, 0, 30, bisque, 2)

This would print “Hello!” in the top left of the screen at a text size of 30, with bisque ink and a delay of 2
seconds.

The next step is to set up a couple of useful global variables for the quiz. We need to keep track of the
player score and the answer they choose. Simple enough!

22. answer = 0
23. score = 0

These two global variables are all we need for the whole
program! Both of these variables will change as we play the
game.

Nearly finished with the setup! The last step is to write the basic template for our main loop.

This will be a loop inside a loop. In fact, there will be a few loops going on by the time we’re finished!

25. loop
26. for i = 0 to len(quiz) loop
27.
28. repeat
29.
30. repeat

Below is the basic template of our main program. There are two loops - one outside infinite loop, and one
inside for loop. The inside loop will count over each question in the quiz array.

Outside loop
Inside loop

Inside the for loop (the inside loop) is where the quiz itself will be taking place. We’ll be working within
that loop for the next couple of sections.

On line 29, after the for loop is where we will write the code to see how the player performed during the
quiz, and let them know their score. Then, the whole quiz will loop around from the beginning!

3

4

Page 15

Project: 8c
“Mega Quiz”

Our next task is to write the playable part of the quiz. We need to use our data in the quiz array in this
section, we’ll also be putting the qPrint function to use!

The first order of business is to print the question on screen, followed by the possible answers. We’ll also
need a text prompt to let the player know how to select a question.

26. for i = 0 to len(quiz) loop
27. clear()
28. qPrint(quiz[i].question, 0, 0, 30, white, 2)

We’ve written line 26 here as a guide -
make sure you don’t type that line
twice! It is there to show you where
the new lines go.

We clear() the screen for a fresh page, and then use qPrint to print the .question property of the first
element in the quiz array.

Feel free to try different sizes, placements and colours! We’ve also used a delay of 2 seconds to make
sure the player has time to read the question.

29. qPrint(“A: “ + quiz[i].answers[0], 0, 2, 30, white, 0.5)
30. qPrint(“X: “ + quiz[i].answers[1], 0, 3, 30, white, 0.5)
31. qPrint(“Y: “ + quiz[i].answers[2], 0, 4, 30, white, 0.5)

Next, we need to print the multiple-choice answers to the question in a clear way. We’ll need to use 3
separate qPrint instructions here, since we want each answer to correspond to a different button:

Now let’s give the player a prompt so they know how to select an answer!

We’ve used a very short
delay time of 0.5 here to
keep things moving.

32. qPrint(“Make your choice using the joy-con buttons! “, 0, 6, 40, white, 1)

Done! The four lines of code we just wrote will handle all of the printing for the entire quiz! This is the
power of for loops and good data setup. We could add as many questions as we want to our quiz array,
and we don’t need to touch this part!

29. qPrint(“A: “ + quiz[i].answers[0], 0, 2, 30, white, 0.5)
30. qPrint(“X: “ + quiz[i].answers[1], 0, 3, 30, white, 0.5)
31. qPrint(“Y: “ + quiz[i].answers[2], 0, 4, 30, white, 0.5)

25. loop
26. for i = 0 to len(quiz) loop
27. clear()
28. qPrint(quiz[i].question, 0, 0, 30, white, 2)
29. qPrint(“A: “ + quiz[i].answers[0], 0, 2, 30, white, 0.5)
30. qPrint(“X: “ + quiz[i].answers[1], 0, 3, 30, white, 0.5)
31. qPrint(“Y: “ + quiz[i].answers[2], 0, 4, 30, white, 0.5)
32. qPrint(“Make your choice using the Joy-Con buttons! “, 0, 6, 40, white, 1)
33.
34.
35. repeat
36.
37. repeat

Your whole main loop should look like the code below. Double check it against yours and make sure it all
matches up before we move on! The next section will be added just before the repeat on line 35. Give
yourself a couple of lines of space like we have in the example.

5

6

7

Page 16

Project: 8d
“Mega Quiz”

Well done for making it this far! We’re getting into the mechanics of how to select an answer now. For
this, we’ll need to write a little routine inside our for loop. Get ready for some if statements!

51. if answer == quiz[i].correct then
52. qPrint(“Correct! “, 0, 8, 50, green, 1)
53. score += 1
54. else
55. qPrint(“Bad Luck… Incorrect! “, 0, 8, 50, red, 1)
56. endif
57. repeat

34. press = false
35. while press == false loop
36.
37. repeat
38. repeat

The new code we’ve added are lines 34 - 37. The repeat
keyword on line 38 should already be there for you, this is the
repeat which matches the for i = 0 to len(quiz) instruction on
line 26.

Once we’ve added this new while loop, we’ll be working inside
it, on line 36.

But what is going on with this strange looking while loop?

Before we start it, we define a local variable called press. This variable will tell us when a button is
pressed to select an answer. We want this loop to repeat until the player presses a button.

Because we wrote while press == false loop, this loop will stop when the press variable becomes true.

This will allow us to easily stop the the loop when the player selects a question!

34. press = false
35. while press == false loop
36. c = controls(0)
37. if c.a then
38. press = true
39. answer = 0
40. endif
41. if c.x then
42. press = true
43. answer = 1
44. endif
45. if c.y then
46. press = true
47. answer = 2
48. endif
49. repeat

Give yourself one line of space, then on line 51 we must write the if statement which checks the answer
against the correct answer for the current question. This section should be very familiar from the previous
quiz game! Notice the repeat on line 57. This repeat is the one tied to the for loop on line 26.

On the left we have the code which allows the player to
input an answer. The new code is from line 36 to line 48.

This loop will continue to run until the player selects an
answer using the Joy-Con controller buttons.

Inside our while loop, we first call the controls() function
and assign it to a variable called c.

We can then check the buttons we want by using three if
statements. Since each button provides a different answer,
we have used three separate if statements here, each one
assigning a different number to the answer variable.

In each if statement, we make the press variable true in
order to break out of the loop.

8

9

10

Page 17

Project: 8e
“Mega Quiz”

We’re nearly there! All that remains to do is the ending. We now have an array of questions, with a for
loop counting over each one, printing the question and its answers. The user can select an answer and we
check it against the correct one, printing the result.

All we need to do is to let the player know how they’ve done and write a small section to allow them to
play again, returning to the very start of our main program loop.

59. clear()
60. qPrint(“Let’s see how you did… “, 0, 0, 40, white, 1)
61. qPrint(“You scored: “ + score + “ out of “ + len(quiz), 0, 2, 40, white, 2)

These three lines are all we need here. First we clear() the screen for a fresh page, then we print two
messages. The first is very simple, but the second could use some explaining - although it’s nothing new!

We create a sentence by adding strings together. The player score is displayed out of len(quiz). In the
program so far, the length of the quiz is 2 questions - but you should add many more! By using len(quiz)
we can add questions without worrying about our print statements being incorrect later.

Our last task is to write a routine which allows the player to try again to get a better score. We’ll need
another while loop to do this! Give yourself another line of space to keep things neat, then type the code
below:

63. press = false
64. while press == false loop
65. clear()
66. c = controls(0)
67. qPrint(“Press the B button to play again! “, 0, 0, 50, white, 0)
68. if c.b then
69. press = true
70. score = 0
71. endif
72. repeat
73. repeat

This while loop is very similar to the one we wrote before for the player answer input. First we must reset
our press variable before the loop begins. Inside the loop, we check the controls, print a message and use
a simple if statement to check if the B button is pressed. If it is, we set the press variable to true to break
out of the loop and we reset the score variable. Once the loop is broken, we move on to the final repeat.

The final repeat keyword on line 73 should already be there for you - no need to type it in. This repeat is
tied to the main loop on line 25.

If you find you have the wrong number of repeat or endif keywords, don’t worry! You can compare the
whole program listing on the next page.

1

12

Page 18

“Mega Quiz”

Project: 8f

1. quiz = [
2. [
3. .question = “What is an array?” ,
4. .answers = [“A table of data”, “A sausage”, “A type of small dog”],
5. .correct = 0
6.],
7. [
8. .question = “What is a loop?” ,
9. .answers = [“A type of cheese”, “A repeated set of instructions”, “A dance”],
10. .correct = 1
11.]
12.]
13.
14. function qPrint(text, x, y, size, colour, delay)
15. textSize(size)
16. ink(colour)
17. printAt(x, y, text)
18. update()
19. sleep(delay)
20. return void
21.
22. answer = 0
23. score = 0

HACKER CHALLENGE:
1. Check all of your code and make sure it’s in perfect working order!
2. EASY! Can you add more questions to your quiz for a total of 5?
3. TRICKY! Can you add one more potential answer to your questions? You’ll have to add quite a few
things for this to work!You’ll need to modify the quiz array, add another qPrint instruction, and add
another if statement to the while loop which checks the player input.

Congratulations! You’ve completed the FUZE Project Workbook 2. Give yourself a high five! Or a pat on
the back. Even just a satisfied smile will do!

By now you should be understanding the basics more clearly, feeling confident with loops, variables and
if statements and even beginning to set up data in more complicated and efficient ways.

Learning to code is not easy - it’s all very well and good being told what an array or a structure is but
these ideas don’t “click” into place until you’ve had some practice. There’s the magic word - Practice!

Keep going. Play with these projects and write them in different ways, change numbers, multiply instead
of add - there’s no wrong way to experiment with them! You will learn something new by simply trying
things out. Don’t worry if it doesn’t work, it’s a chance to learn something new!

Below (and on the following page) is the full program listing for the quiz project with correct line
numbers. Be sure that yours matches up before you start changing things. Making a copy is a great idea!

Page 19

“Mega Quiz”

Project: 8f

25. loop
26. for i = 0 to len(quiz) loop
27. clear()
28. qPrint(quiz[i].question, 0, 0, 30, white, 2)
29. qPrint(“A: “ + quiz[i].answers[0], 0, 2, 30, white, 0.5)
30. qPrint(“X: “ + quiz[i].answers[1], 0, 3, 30, white, 0.5)
31. qPrint(“Y: “ + quiz[i].answers[2], 0, 4, 30, white, 0.5)
32. qPrint(“Make your choice using the Joy-Con buttons! “, 0, 6, 40, white, 1)
33.
34. press = false
35. while press == false loop
36. c = controls(0)
37. if c.a then
38. press = true
39. answer = 0
40. endif
41. if c.x then
42. press = true
43. answer = 1
44. endif
45. if c.y then
46. press = true
47. answer = 2
48. endif
49. repeat
50.
51. if answer == quiz[i].correct then
52. qPrint(“Correct! “, 0, 8, 50, green, 1)
53. score += 1
54. else
55. qPrint(“Bad Luck… Incorrect! “, 0, 8, 50, red, 1)
56. endif
57. repeat
58.
59. clear()
60. qPrint(“Let’s see how you did… “, 0, 0, 40, white, 1)
61. qPrint(“You scored: “ + score + “ out of “ + len(quiz), 0, 2, 40, white, 2)
62.
63. press = false
64. while press == false loop
65. clear()
66. c = controls(0)
67. qPrint(“Press the B button to play again! “, 0, 0, 50, white, 0)
68. if c.b then
69. press = true
70. score = 0
71. endif
72. repeat
73. repeat

Page 20

Glossary

Glossary of Commands Used

array
Initialises an array of integer values. Default
value is 0. For example:

array numbers[10]

Creates an array of ten elements where each
element contains a 0.

Extra dimensions can be specified:

array grid[10][10]

Creates a 10 by 10 two dimensional array.

array grid[10][10][10]

Creates a 10 by 10 by 10 three dimensional
array.

Arrays may also be defined in the following way,
with specific values:

myArray = [1, 2, 3, 4]

Furthermore, an array can be defined as empty
and expanded later:

myArray = []
myArray[1] = 400

The above creates an empty array, then defines
element 1 as the number 400. Undefined
elements prior to the one specified will be
assigned the value 0.

drawImage() / drawImageEx()
Draws an image loaded by loadImage() to the
screen. Different parameters allow for various
control over the drawn image:

drawImage(image, x, y)
drawImage(image, x, y, scale)

drawImageEx(image, {x, y}, rotation, { xScale,
yScale }, tint)

Data types are outlined by colour above. Black
types are handles (variables which store the
image). Yellow types are floating point numbers.
Green types are colour names

for / step
Initiates a special loop which repeats a specific
number of times. Requires a variable definition
which acts as a counter within that loop.

for i = 0 to 10 loop
print(i)
update()
sleep(1)

repeat

The above loop will repeat a total of 10 times.
The i variable will begin at 0 and end at 9.

The step keyword may be used to allow the
counter variable to increase at a specified rate:

for i = 0 to 10 step 2 loop
print(i)
update()
sleep(1)

repeat

The above loop will repeat a total of 5 times. The
i variable will begin at 0 and end at 8, counting by
2 each time.

function / return / void
Allows the user to create a custom function with
specified inputs and outputs. If no output is
required the void keyword is used

function divideByTen(number)
return number / 10

The function above receives one input (number)
and returns that value divided by ten.

function printInGreen(text)
ink(green)
print(text)

return void

The above prints specified text in green ink.

loadImage()
Loads an image from the FUZE⁴ media Library:

loadImage(filename)

Page 21

Published in the United Kingdom ©2020 FUZE Technologies Ltd. FUZE
and the FUZE logos and associated designs, documentation and

materials are copyright FUZE Technologies Ltd.

FUZE registered trademark #UK00002655290

No part of this document may be copied, reproduced and or
distributed without written consent from FUZE Technologies Ltd. All

rights reserved.

FUZE is developed in the UK by:

FUZE Technologies Ltd.
15 Clearfields Farm

Wotton Underwood
Aylesbury,

Buckinghamshire
HP18 0RS

England

Contact information
email: contact@fuze.co.uk

phone: +44(0) 1844 239 432

@fuzeArena

